公司新聞
NEWS
2025年
Gong, Gong, T., Xuan, T., Bai, W., Dong, H., Huang, K., & Xie, R. (2025). Quantum Dot luminescence microspheres enable Ultra‐Efficient and bright Micro‐LEDs. Advanced Materials. http://doi.org/10.1002/adma.202411999
Sun, Y., Sun, M., Lun, Z., Liu, G., Huang, Y., Chen, W., Wang, Y., Huang, H., Chen, Q., Li, J., & Xia, Z. (2025). Broadband Near‐Infrared Fibers Derived from Nanocrystal‐Glass Composites for Miniature Arrays Light Sources. Advanced Materials. http://doi.org/10.1002/adma.202416861
Xia, D., Li, J., Zhang, Q., Shen, S., Sheng, C., Cong, C., Qiu, Z., Hu, L., & Liu, R. (2025). Transferable Self-Assembled Quantum Dot microarrays for High-Resolution Luminescent applications. ACS Applied Nano Materials. http://doi.org/10.1021/acsanm.4c06769
Wang, W., Jiang, P., Wu, Z., Long, R., Liu, F., Du, H., Tang, Y., Yang, X., Wu, F., Song, B., & Sun, L. (2025). Ligand-engineered quantum dots for photolithographic micro-LED color conversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 724, 137505. http://doi.org/10.1016/j.colsurfa.2025.137505
Ye, S., Xu, C., Li, H., Feng, S., Wang, Y., & Gao, F. (2025). Enhancing lateral flow immunoassay performance for cardiac troponin I detection with pore-size tailored silica nanoparticles and smartphone-based “AdaptiScan” analysis. Frontiers in Bioengineering and Biotechnology, 13. http://doi.org/10.3389/fbioe.2025.1568719
Tan, C., Shan, X., Ren, T., Chen, X., Zhang, Z., Lin, R., Mei, S., Xie, J., Deng, T., Lu, T., Guo, R., Zhang, S., & Tian, P. (2025). Direct patterning and optical properties of quantum dot films based on UV micro-LEDs. Optics Express, 33(12), 24746. http://doi.org/10.1364/oe.558691
Chen, K., Liu, Y., Wang, X., Liu, P., Lei, C., Zheng, Y., Li, D., Wu, J., Wang, B., Sun, X., Chen, P., & Peng, H. (2025). A Full‐Color Textile Display with 122% sRGB Gamut by Designing Three‐Primary‐Color Interwoven Pixels. Advanced Optical Materials, 13(32). http://doi.org/10.1002/adom.202502380
Li, X., Guo, L., Xu, C., Qu, A., & Kuang, H. (2025). High-sensitivity fluorescent immunochromatographic test strips for point-of-care testing of tenuazonic acid: hapten design, monoclonal antibody preparation, and assay development. Journal of Materials Chemistry B. http://doi.org/10.1039/d5tb02249e
2024年
Gong, T., Yang, Y., Xuan, T., Bai, W., Dong, H., Zhou, T., & Xie, R. (2024). Local light field control enables efficient quantum dot color conversion films for Mini‐LED backlit displays. Laser & Photonics Review, 18(10). https://doi.org/10.1002/lpor.202301097
Huang, S., Li, J., Wei, L., Zheng, L., Shi, Z., Guo, S., Dai, B., Zhang, D., & Zhuang, S. (2024). A miniature Modular Fluorescence Flow Cytometry system. Biosensors, 14(8), 395. http://doi.org/10.3390/bios14080395
Huang, J., Li, Z., Zhu, Y., Yang, L., Lin, X., Li, Y., Wang, Y., Wang, Y., Fu, Y., Xu, W., Huang, M., Li, D., & Pan, A. (2024). Monolithic Integration of Full‐Color Microdisplay Screen with Sub‐5 μm Quantum‐Dot Pixels. Advanced Materials. http://doi.org/10.1002/adma.202409025
Wang, L., Shi, S., Yin, L., Zhai, Y., Xuan, T., Liu, B., & Xie, R. (2024). Water-Soluble Quantum Dots for Inkjet Printing Color Conversion Films with Simultaneous High Efficiency and Stability. ACS Applied Materials & Interfaces, 16(4), 5050–5057. http://doi.org/10.1021/acsami.3c13244
2023年
Wang, Y., Long, R., Yang, Y., Zhang, D., & Zhang, J. (2023). Highly luminescent and uniform patterned quantum dot color converters via ligand engineering. Giant, 16, 100202. http://doi.org/10.1016/j.giant.2023.100202
Yin, Y., Lin, Y., & Liu, Z. (2023). 21‐2: The full‐color Micro‐LEDs display based on quantum dots. SID Symposium Digest of Technical Papers, 54(1), 272–274. https://doi.org/10.1002/sdtp.16544
Yin, Y., & Liu, Z. (2023). P‐10.3: The full‐color display Micro‐LEDs based on quantum dots photolithography. SID Symposium Digest of Technical Papers, 54(S1), 792–794. https://doi.org/10.1002/sdtp.16414
2022年
Gao, F., Liu, C., Yao, Y., Lei, C., Li, S., Yuan, L., Song, H., Yang, Y., Wan, J., & Yu, C. (2021). Quantum dots’ size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination. Biosensors and Bioelectronics, 199, 113892. http://doi.org/10.1016/j.bios.2021.113892 (IF: 12.6)
Shi, S., Bai, W., Lin, C., Xuan, T., Dong, G., Huang, F., & Xie, R. (2022b). Uniformity and stability of quantum dot pixels evaluated by microscale fluorescence spectroscopy. Laser & Photonics Review, 16(8). https://doi.org/10.1002/lpor.202100699
2021年
Gao, F., Lei, C., Liu, Y., Song, H., Kong, Y., Wan, J., & Yu, C. (2021). Rational design of dendritic mesoporous silica nanoparticles’ surface chemistry for quantum dot enrichment and an ultrasensitive lateral flow immunoassay. ACS Applied Materials & Interfaces, 13(18), 21507–21515. https://doi.org/10.1021/acsami.1c02149 (IF: 9.5)
Gao, F., Liu, Y., Lei, C., Liu, C., Song, H., Gu, Z., Jiang, P., Jing, S., Wan, J., & Yu, C. (2021). The role of dendritic mesoporous silica nanoparticles’ size for quantum dots enrichment and lateral flow immunoassay performance. Small Methods, 5(4), e2000924. https://doi.org/10.1002/smtd.202000924(IF: 12.4,該文章被MaterialsViews報道,標題為《納米調(diào)控提升側(cè)流免疫層析檢測靈敏度》)
Xuan, T., Guo, S., Bai, W., Zhou, T., Wang, L., & Xie, R. (2022). Ultrastable and highly efficient green-emitting perovskite quantum dot composites for Mini-LED displays or backlights. Nano Energy, 95, 107003. https://doi.org/10.1016/j.nanoen.2022.107003
2018年
Xu, J., Hu, B., Xu, C., Wang, J., Liu, B., Li, H., Wang, X., Du, B., & Gong, Y. (2018). A unique color converter geometry for laser-driven white lighting. Optical Materials, 86, 286–290. https://doi.org/10.1016/j.optmat.2018.10.012